The realization space is [1 1 0 -x1^2 - x1 + 1 0 1 1 0 -x1^3 + 2*x1 - 1 1 x1 - 1] [0 1 1 -2*x1^2 + x1 0 0 1 x1 - 1 -2*x1^3 + 3*x1^2 - x1 x1 x1^2 - x1] [0 0 0 0 1 1 1 -x1 x1^4 + x1^3 - x1^2 -x1 + 1 -x1^2] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (-x1^11 + 6*x1^8 - x1^7 - 15*x1^6 + 17*x1^5 - 7*x1^4 + x1^3) avoiding the zero loci of the polynomials RingElem[2*x1 - 1, x1, x1 - 1, x1^2 + x1 - 1, x1^4 - x1^3 + 4*x1^2 - 4*x1 + 1, x1^4 + 2*x1^2 - 3*x1 + 1, x1^4 + x1^3 + x1^2 - 3*x1 + 1, x1^3 + x1 - 1, x1^3 + x1^2 + x1 - 1, x1^3 + 3*x1^2 - 4*x1 + 1, x1^3 - x1^2 + 2*x1 - 1]